Algorithms for computing sparsest shifts of polynomials in power, Chebyshev, and Pochhammer bases

نویسندگان

  • Mark Giesbrecht
  • Erich Kaltofen
  • Wen-shin Lee
چکیده

We give a new class of algorithms for computing sparsest shifts of a given polynomial. Our algorithms are based on the early termination version of sparse interpolation algorithms: for a symbolic set of interpolation points, a sparsest shift must be a root of the first possible zero discrepancy that can be used as the early termination test. Through reformulating as multivariate shifts in a designated set, our algorithms can compute the sparsest shifts that simultaneously minimize the terms of a given set of polynomials. Our algorithms can also be applied to the Pochhammer and Chebyshev bases for the polynomials, and potentially to other bases as well. For a given univariate polynomial, we give a lower bound for the optimal sparsity. The efficiency of our algorithms can be further improved by imposing such a bound and pruning the highest degree terms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Polynomial Interpolation in Nonstandard Bases

In this paper, we consider the problem of interpolating univariate polynomials over a eld of characteristic zero that are sparse in (a) the Pochhammer basis or, (b) the Chebyshev basis. The polynomials are assumed to be given by black boxes, i.e., one can obtain the value of a polynomial at any point by querying its black box. We describe eecient new algorithms for these problems. Our algorithm...

متن کامل

On Group Fourier Analysis and Symmetry Preserving Discretizations of PDEs

In this paper we review some group theoretic techniques applied to discretizations of PDEs. Inspired by the recent years active research in Lie groupand exponential time integrators for differential equations, we will in the first part of the article present algorithms for computing matrix exponentials based on Fourier transforms on finite groups. As an example, we consider spherically symmetri...

متن کامل

Solving the fractional integro-differential equations using fractional order Jacobi polynomials

In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra  integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...

متن کامل

Interpolation of Shifted-Lacunary Polynomials [Extended Abstract]

Given a “black box” function to evaluate an unknown rational polynomial f ∈ Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity t ∈ Z>0, the shift α ∈ Q, the exponents 0 ≤ e1 < e2 < · · · < et, and the coefficients c1, . . . , ct ∈ Q \ {0} such that f (x) = c1(x − α)1 + c2(...

متن کامل

A new algorithm for computing SAGBI bases up to an arbitrary degree

We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2003